
1

Software Requirements Specification

Student Code Online Review and
Evaluation

A terminal program and web application for use in Florida Tech’s CSE
department to facilitate the submission of code for professor-created

assignments.

Team Members:
Michael Komar - mkomar2021@my.fit.edu
Charlie Collins - ccollins2021@my.fit.edu
Logan Klaproth - lklaproth2021@my.fit.edu

Thomas Gingerelli - tgingerelli2021@my.fit.edu

Faculty Advisor / Client:
Dr. Raghuveer Mohan - rmohan@fit.edu

09/20/2024

mailto:mkomar2021@my.fit.edu
mailto:ccollins2021@my.fit.edu
mailto:lklaproth2021@my.fit.edu
mailto:tgingerelli2021@my.fit.edu
mailto:rmohan@fit.edu


2

Table of Contents

Table of contents - 1

1. Introduction -

1.a Purpose

1.b Scope

1.c Definitions, acronyms and abbreviations

1.d References

1.e Overview

2. Overall Description -

2.a Project perspective

2.b Product functions

2.c User characteristics

2.d Constraints

2.e Assumptions and Dependencies

2.f Apportioning of Requirements

3. Requirements -

3.a Functional requirements

3.b Interface Requirements

3.c Security requirements



3

Introduction

1.a Purpose
The purpose of this document is to outline the requirements for the features of the
Student Code Online Review and Evaluation (SCORE) application for the purposes of
development.

1.b Scope
The scope of the SCORE application is to provide a more streamlined submission
platform for the CSE department to submit code. This application also intends to allow
more feedback to be given to the students and provide a more efficient grading platform
for professors.

1.c Definitions
● Auto Test: A submission will be run with the provided input and compared against

the expected output.
● Test case: Expected input and output

○ Visible: Shown to the student
○ Hidden: Not shown to the student

● MOSS: Measure of Software Similarity algorithm
● Grading portal: The page where a professor can view and modify grades
● SSH: Secure Shell
● MD: Markdown
● Code01: Florida Tech CSE’s server

1.d References
● MOSS: https://theory.stanford.edu/~aiken/moss/
● Canvas Api Documentation: https://canvas.instructure.com/courses/785215
● Python Canvas Package:

https://canvasapi.readthedocs.io/en/stable/getting-started.html#

https://theory.stanford.edu/~aiken/moss/
https://canvas.instructure.com/courses/785215
https://canvasapi.readthedocs.io/en/stable/getting-started.html#


4

Overall Description

2.a Project Perspective
SCORE will consist of a backend server with which students can submit
assignments, and professors can view assignments. This application will also
include configurable auto tests that will be performed on each submission, and
will be integrated with Canvas for seamless grade submissions.

2.b Product Functions
SCORE is a robust, full stack, code submissions platform. The main features of
the application will be assignment submission, configurable auto tests, test case
specific feedback, and Canvas integration

2.c User Characteristics
For this application there are two intended users: students and professors.
Students will be able to view assignments, submit to assignments, and view
feedback. Professors will be able to create assignments, set up auto tests and
feedback, and view student submissions.

2.d Constraints
There are several constraints on the SCORE application, the first being user
authentication. We can’t rely on any authentication, but specifically one that will
allow only Florida Tech students and professors to use the application. The next
big constraint is on computational power of the server SCORE will be hosted on.
This will constrain how quickly we can auto test submissions and how many
student users the application can serve at a given time.

2.e Assumptions and Dependencies
SCORE has two main dependencies. The first is on user authentication, in which
there will be a dependency onto the TRACKS CAS system. The second
dependency is onto the Canvas API, as it will be utilized to upload grades from
the grading portal to Canvas.



5

2.f Apportioning of Requirements
Moving forward, once these requirements are met, we hope to be able to allow
SCORE to accept a greater number of programming languages and have more
robust similarity detection using clustering.

Requirements

3.a Functional Requirements

3.a.1 Immediate Feedback
Upon submission of an assignment, the auto-grading system will automatically
test the assignment against a predefined set of test cases. Depending on the
configuration of the assignment, students will be able to view pass/fail results on
a certain number of test cases. Each test case will have an associated amount of
feedback, if that test case was a failure, then the associated feedback will direct
students toward correcting common errors. Professors will have access to view
all provided feedback to each student, per student submission. In addition to the
immediate feedback present on submission, after the due date students will be
able to view the feedback from any hidden test cases that were used for grading
but not revealed during the development process.

3.a.2 Auto Testing
Upon submission of each submission, the auto-grading system will automatically
compile, run, and test each submission in a unique testing container. These test
cases will be documented in the database, and user feedback will be shown to
the user. Professors will receive a detailed report including any errors, failures,
and potential grade report when this testing is completed.

3.a.3 Grading Portal
Once the due date is reached, each student's highest graded submission will be
applied to any defined curve, if any exist. Then, these grades will be uploaded to
the class's Canvas page. If during the grading process a student's submission
was flagged for potential plagiarism, then the professor will be notified and
grades will be withheld from Canvas until the plagiarism is manually reviewed by
the professor. During the assignment creation process, a professor can configure
a flag to enable manual review of grades before they are uploaded to Canvas.



6

3.a.4 MOSS Integration
● Once the due date for an assignment has passed, all of the submissions will be

checked for similarities using MOSS (Measure of Software Similarity). The file
submissions will be sent to Stanford’s MOSS server, and the application will
receive an HTML report on the similarities. This report will then be interpreted by
the application and provide visual indication on the grading portal for professors
about which student submissions have been flagged for similarities. The HTML
report that the application receives will also be available to download from the
professor client.

○ Within the portal, flagged students will have their name underlined in red,
with a warning symbol next to it. Upon clicking on the student’s name, the
application will display the other submission(s) that have been suspected
of being copied from.

○ Sample Input (Valid): A list of student-submitted files
○ Sample Output: Similar submissions will be underlined in red
○ Sample Output: A downloadable HTML report

3.a.6 Shell Client-Server connection
● The basic functionality of the program will all be available through the connection

between a client and the submission server.
○ Example connection:

■ “ssh jsmith9999@code01.fit.edu” - enter into code01.
■ “score connect” - from code01 connect to SCORE.

○ Sample Input
■ “list classes“

○ Sample Output
■ “CSE4101 - Computer Science Project”
■ “CSE4020 - Database Systems”

○ Sample Input
■ “select CSE4020”
■ “list assignments”
■ “exit”

○ Sample Output
■ “4020 selected”
■ “Homework 1 - Relational Algebra”
■ “exited 4020 successfully”

● Assignments created, removed, or edited on the shell client will be cached and
changes will be automatically synchronized to the submission server.

mailto:jsmith9999@code01.fit.edu


7

● The server will accept a large number of concurrent connections but will prioritize
accurate time-stamping of submissions (rather than auto-grading) in the event of
the system being overwhelmed.

● When the server receives a submission, assuming sufficient resources are
available, it will automatically create a virtual environment to execute the code
submission on, receive the output from the virtual environment, and then recycle
the pre-allocated memory and processing power.

3.a.7 Web Application-Server connection
● Assignments created on the web application will be stored on the server along

with any associated files or details.
● Files uploaded to the web application by students will be stored and tested on the

backend.
● Student submissions stored on the backend will be visible to the professor.
● Details of auto-testing will be displayed on the web application for the professor

to review.
○ The number of test cases passed or failed will be visible to the professor
○ Students will see results if the professor configures so.

■ Feedback attached to test cases will be visible to students
● Details of the MOSS report will be displayed on the web application for the

professor to review.

3.a.8 Assignment Creation
● The professor can create and edit an assignment by providing the following

information: assignment name, assignment description, number of allowed
attempts, assignment due date, assignment test cases, and auto-test
configuration.

○ Assignment name: This is the name of the assignment as it will appear on
both the student dashboard and the professor dashboard.

■ Sample Input (Valid): Joy With Centrality.
■ Sample Output: An assignment with the above.

○ Assignment description: This is the written description of the assignment
uploaded as a file. Accepted file types are .doc, .docx, .pdf, .txt, or md. In
the client shell, the assignment description can be written directly in the
application. This description can include images and any media supported
by the above file types. If an unsupported file type is provided, the
application will display an “Unsupported file type” error message.

■ Sample Input (Valid): A .pdf file.
■ Sample Output: An assignment with the above .pdf file as its

description.



8

■ Sample Input (Invalid): A .png file
■ Sample Output: Unsupported file type error message

○ Number of allowed attempts: This is the number of times that a student
can resubmit an assignment. By default, this field is set to unlimited,
meaning students can resubmit as many times as they wish. This can be
changed to a positive integer representing the number of allowed
attempts.

■ If a non-positive integer number is inputted, the field will default
back to unlimited, and the application will display “Invalid Input”
error message.

■ Sample Input (Valid): 10
■ Sample Output: Number of allowed attempts is set to 10
■ Sample Input (Invalid): -2
■ Sample Output: Invalid Input error message

○ Assignment due date: This is the due date upon which no more
submissions will be allowed from students. If auto-grading is configured,
once this date has passed, the grades will automatically be uploaded to
canvas or be available as a .csv.

■ Sample Input (Valid): 9/22/2024
■ Sample Output: The due date is set to the above date

○ Assignment test cases: The user can provide as many test cases as they
wish. By default, there will be no test cases, but clicking the “New Test
Case” button or using the “New Test Case” command will create a new
test case. Each test case has the following fields: input, output, feedback,
and visibility.

■ Input: This is the input that will be supplied to the student
submission. This can be entered as text or uploaded as a text file.

■ Output: This is the expected output of the programming given the
corresponding input, which will be used to determine the auto-test
score of a submission.

■ Feedback: This is an optional field that allows the user to attach
feedback to this specific test case. The user can also attach
feedback to be triggered only by certain output. Ex. If the
submission outputs a negative integer, provide feedback A, else
supply feedback B. This field is blank by default and can be left
blank by the user.

■ Visibility: This field defines whether or not the student user will be
able to view this test case. Visibility can be set to either Visible or
Hidden. All test cases marked as Visible will be shown to the



9

student as a part of the assignment details. All test cases marked
as Hidden will never be shown to the student user.

3.a.9 Assignment Submission
● The student user can submit a valid assignment within the classes that they are a

part of before the due date has passed. A submission requires the student to
upload a file or multiple files. By default, the submission is a single file, but the
student can increase the number of files submitted by clicking the “Add Another
File” button within the web app or by using the “Add Another File” command in
the shell client.

○ Accepted file types: python, java, C++, and C
○ Unaccepted file types (not limited to): Byte code, executables, folders, or

compressed archives
■ Upon uploading a non-accepted file type, the application will reject

the file and display an “Unsupported file type” error message.
○ Sample Input (Valid): A Python file
○ Sample Output: The above file is submitted to the assignment
○ Sample Input (Invalid): A zipped archive
○ Sample Output: Unsupported File Type error message

● After a submission is graded, the student may upload a new submission so long
as they have not exceeded the number of allowed attempts.

○ Upon exceeding the number of allowed attempts, the “Submit” button on
the assignment details page will be grayed out, and the “Submit”
command in the shell will no longer be allowed.

3.a.10 Assignment Deletion
● The professor user can delete any assignment for their class. This can be done

by using the “Delete Assignment” button located within the professor dashboard
of the web client, as well as the “Delete Assignment” command from within the
shell client. Upon doing these actions, the application will ask the professor to
confirm that they wish to delete the assignment and inform the professor that this
action can not be undone.

○ When an assignment is deleted, all student submissions, as well as
associated auto-testing scores, will also be deleted.

○ Sample Input (Valid): User selects delete, then confirm
○ Sample Output: The assignment and associated submissions are deleted

3.b Interface Requirements
3.b.1 Shell Client



10

● The student will be able to access the code submission application through the
submit shell on code01. Functionality available to the student will be displayed
using shell commands. Classes that the student is a part of will be populated in
the shell client and this list can be viewed at any time. To view a specific
assignment for a class, the student will first select that class before being
prompted with class specific commands.

○ The student can choose a class to specifically filter by. Commands
entered within the class filter will only show information about that class.

○ The student can select an assignment to make a submission towards.
○ The student can view detailed information about the selected assignment.

● The professor will be able to access the code submission application through the
submit shell on code01. Functionality available to professors will be displayed
using shell commands with the added functionality of adding, editing, and
removing assignments as well as viewing student submission information for
assignments.

○ The professor can add, remove, or edit classes that enrolled students will
join by running the appropriate command.

○ The professor can add, remove, or edit assignments using the appropriate
command.

○ The professor can view at any time three different levels of information,
class specific, assignment specific, and user specific.

3.b.2 Web Application
● The student will be able to access an online dashboard populated with enrolled

courses and navigate between them through an interactive web application. Each
class page will display abbreviated cards for past, current, and future
assignments with corresponding details and an option to display detailed
feedback. Each assignment will have a dedicated page displaying the
assignment details, results of test cases, potential feedback, and a section for file
submissions.

○ Students can interact with assignment cards for more details regarding
assignment submissions.

○ Students can upload files for submission on an assignment’s page in the
submission section.

● The professor will be able to access an online dashboard populated with classes
the professor teaches. The professor can navigate between multiple class pages.
The professor will see brief cards of past and current assignments per course
and have the ability to create and post new assignments.

○ The professor can assign a name, description, due date, and suite of test
cases. The professor can modify the details of existing assignments.



11

■ The professor can specify input, output, feedback, and visibility per
test case.

○ The professor will have access to a page displaying student submissions
and other details for the purpose of grading

■ The professor can view each student’s submission and the number
of test cases each submission has passed.

■ The professor can assign grades and comments to each
submission.

■ The professor will see students who have been flagged by MOSS
for plagiarism detection.

3.c Security Requirements
3.c.1 User Authentication

When registering or logging in, students will use their Florida Tech login
credentials to gain access to the server. We will use industry standard
security processes to verify that it is the correct user accessing the site.

3.c.2 Containerization


